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1. Introduction

Much of mathematical analysis is devoted to the

problem of predicting the future behavior of a system,

given a descriptive equation and the current state. This

is surprising since a basic scientific problem in such

fields as physics, engineering, biology and economics is

that of determining the structure of a system, given

various observations over time [1-61. In the pist, such

system identification or inverse problems were solved by

trial and error or by simple approximations. Modern

computing machines have dramatically altered the picture

with their ability to integrate systems of several

thousand differential equations given a complete set of

initial conditions. Many types of functional equations

may be converted into systems of ordinary differential

equations. This means that wide classes of direct

problems can be solved as initial-value problems.

*Any views expressed in this paper are those of the

authors. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.

This paper was prepared for presentation at the Hawaii
International Conference on System Sciences, Honolulu,
January 29-31, 1968.
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This also means that a great many inverse problems

may be computationally resolved. Let the equations which

describe a particular prvcess be a system of differential

equations. The unknown structure of the process is

reflected in unknown system parameters which appear in

the differential equations or in the initial conditions,

These parametJrs are to be estimated oru the basis of

observations of the process. The identification problem

takes the form of a nonlinear boundary-value problem.

Thlb can be solved by a variety of methods. One that

has been shown to be quite effective is described below.

2. Illustrative Example

Consider a system undergoing a process which may be

described by the scalar differential equation

(1) * i g(x, a),

where a is an unknown system parameter, and the initial

state

(2) x(O) c

is also unknown. Suppose that at the time t the system

is observed to be in the state bl, i 1, 2, ... , N; t+ 1 2 ti.

Neither the observations nor the theory of Eq. (1) need

be perfect, so in general

(3) x(t 1 ) t b t, 1 1, 2, ... N.
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To fit the theoretical equation (1) to the experimental

data, we wish to determine the constants a and c so that

we minlmizv S, Lh sum of the mquares of the deviations

N

(4) S-) Ix(t)- bi
} 1=1

Frequently this can be done using a quadratically

convergent successive approximation scheme. Let x0(t) ,

a0 and co be the current approximations to the optimal

function x(t) and the parameters a and c. The new

approximations are obtained by consJ 3ring the linearized

equation

(5) i 1 = glx O, aO) + (x1 - xo)gxNO, aO)

+ (a1 -a )ga(xO, aO).

The solution of this equation may be written in the form

(6) xl(t) - p(t) + COhlt) + alq(t), 0 < t < tNI,

where the functions p, h, and q are solutions of the linear

initial-value problems

(7) = (Xo, ao)p + g(x o , ao ) - xo g1 (x0 , a0 )

- ao0ga( x O, ao), p(O) - 0,

(8) = g(xo, ao)h, h(O) a 1,

(9) q = gx(xo, ao)q + g a(xO, a0 ), q(O) 0 0, t 1 t tN .
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The functions p, h and q are readily determined numerically.

Then the constants c I and a1 are determined by minimizing

the expression
N

2

(10) E N {p(ti) + c h(t 1 ) + a q(t) - bi}

Jul

which involves solving the linear algebraic equations

01i) I

The process is repeated until a sufficiently small change

takes place from one step to the neat. In this way,

frequently, the differential equation may be fitted to

the experimental data [4).

3. Other Functional Equations

Systems o. ordinary differential equations may be

fitted to the data in the manner just described. So may

functional equations which can be reduced exactly or

approximately to systems of ordinary differential equations.

The wave equation, for example,

2
(12) u c (X)Uxx

can be reduced to ordinary differential equations either

by taking Laplace transforms or by using the semi-

discretization technique. This leads to the possibility

of identifying inhomogeneous media through observation

of wave propagation processes [71. The reduction of

differential-difference equations to ordinary differential
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equations and the estimation of time lags are discussed

in (5]. Even integral equations may be converted into

initial value probloms 181; this leads to the computational

solution of many inverse problems in multiple scattering

[6).

4. Discussion

Th Iea-t nqttIr, erlterion of the above example may

be replaced by some other criterion, such as a minimax.

condition [9], depending on the statistical nature of

the problem and any a priori estimates that are available. ,1

It the nonlinear Eq. (1) represents a large system

of differential equations with complicated right-hand I
sides, the forming of the partial derivatives needed in
the linearized equations could be a formidable task. A

method for the computer evaluation of partial derivatives

of funet ions given analyticail-y has- been described--by -

Wengert [10) and shown to be useful in orbit determi-

nation [111.

The linearized differential equations may be unstable.

The method of invariant imbedding provides a reformulatdin

in terms of an initial-value problem for stable differ-

ential equations [12]. Invariant imbe(it.ng also obviates

the need to solve linear algebraic equations, another

source of difficulty, by enabling the unknown constants

to be directly determined.



If the data are continuously received, an invariant

imbedding method for sequential filtering may be employed

113, 141.
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